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ABSTRACT

Jiang, Chang. M.S.B.M.E., Purdue University, August 2010. Signaling Pathways
Involved in Mechanical Stimulation and ECM Geometry in Bone Cells. Major Professor:
Hiroki Yokota.

The proliferation and differentiation of osteoblasts are influenced by mechanical
and geometrical growth environments. A specific aim of my thesis was the elucidation of
signaling pathways involved in mechanical stimulation and geometric alterations of the
extracellular matrix (ECM). A pair of questions addressed herein was (a) Does
mechanical stimulation modulate translational regulation through the phosphorylation of
eukaryotic initiation factor 2a (elF2a)? (b) Do geometric alterations affect the
phosphorylation patterns of mitogen-activated protein kinase (MAPK) signaling? My
hypothesis was mechanical stress enhances the proliferation and survival of osteoblasts
through the reduction in phosphorylation of elF2a, while 3-dimensional (3D) ECM
stimulates differentiation of osteoblasts through the elevation of phosphorylation of p38
MAPK.

First, mechanical stimulation reduced the phosphorylation of elF2a.. Furthermore,
flow pre-treatment reduced thapsigargin-induced cell mortality through suppression of
phosphorylation of protein kinase RNA-like ER kinase (Perk). However, H,O,-driven
cell mortality, which is not mediated by Perk, was not suppressed by mechanical
stimulation. Second, in the ECM geometry study, the expression of the active
(phosphorylated) form of p130Cas, focal adhesion kinase (FAK) and extracellular signal-
regulated protein kinase (ERK) was reduced in cells grown in the 3D matrix. Conversely,
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phosphorylation of p38 MAPK was elevated in the 3D matrix and its up-regulation was

linked to an increase in MRNA levels of dentin matrix protein 1 and bone sialoprotein.

In summary, our observations suggest the pro-survival role of mechanical

stimulation and the modulation of osteoblastic fates by ECM geometry.
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1. INTRODUCTION

1.1 Obijective and Background

The objective of my thesis is to elucidate the role of mechanical stimulation and
ECM geometry in the proliferation and differentiation of osteoblasts. Two specific aims

are.

e Aim 1: Examine the effects of varying cellular stresses such as mechanical
stimulation, stress to the endoplasmic reticulum and oxidation on translational

regulation through elF2a.

e Aim 2: Evaluate the effects of environmental alterations, in particular ECM

geometry, in osteoblastic development.

In Aim 1, an integrated stress response within cells can be caused by a number of
insults including hypoxia, nutrient deprivation, viral infection, oxidation and stress to the
endoplasmic reticulum (ER) [1-3]. That stress response leads to preferential translational
activation by a mechanism involving phosphorylation of elF2a [4]. In the case of
extreme levels of insults the response leads to apoptosis [5]. Although mechanical
stimulation increases anabolic responses in bone tissue [6-8] and reduces TNFa driven
cell death [9], little is known about load-driven transcriptional and translational

regulation mediated by phosphorylation of elF2a.
In Aim 2, the alteration of ECM is treated as a unique form of cellular stress.

Skeletal tissues are responsive to alterations in ECM and capable of adjusting their

structural and functional integrity through a process called remodeling [10]. ECM in bone
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offers a track for cellular migration and a communication link for cell-cell interactions
and multiple types of cells such as osteocytes, osteoclasts and osteoblasts act
synergistically for remodeling of ECM. Osteoblasts are primarily responsible for
synthesizing and depositing ECM molecules such as type | collagen, bone sialoprotein
(BSP) and dentin matrix protein 1 (DMP1) [11]. To actively control the fate of
osteoblasts and promote wound healing or organ reconstruction, the effects of various
stimulators including chemical agents such as ascorbic acid [12], growth hormones such
as PTH [13] and mechanical loading [14] have been investigated. Little is known,

however, about the role of ECM milieu in osteoblastic development.

The present study was designed to examine: (a) effects of various stresses on
phosphorylation of elF2a and cell mortality; and (b) role of ECM milieu in osteoblastic

development. The following sets of specific questions were posed:

1. Does mechanical stimulation (in vivo loading and in vitro fluid flow treatment)
modulate phosphorylation of elF2a? If yes, what elF2a kinase is responsible for?

Does fluid flow treatment of osteoblasts suppress stress-driven cell mortality?

2. Do alterations of ECM milieu change genome-wide signaling pathways? If yes,
are those pathways involved in the interactions with ECM molecules or

osteoblastic mineralization?

Regarding Aim 1, previous studies have shown that thapsigargin, a
pharmacological inducer of stress to the ER, alters expression of transcription factors
such as ATF4, Runx2 and Osterix in MC3T3 osteoblast-like cells [15]. Since Perk, one of
the four known elF2a kinases, is responsive to ER mediated stress [16], we hypothesized
that mechanical stimulation to bone would alter phosphorylation of elF2a through Perk
and affect cell mortality. Regarding Aim 2, the elevation of alkaline phosphatase activity

is reported in adult human osteoblasts grown in native collagen gels [17]. It is

www.manaraa.com



hypothesized in the current study that a 3D culture would activate molecular pathways
that suppress cellular proliferation and promote osteoblastic differentiation.

To examine the hypotheses in Aim 1, we evaluated the protein expression levels
of elF2a and its phosphorylated form in mouse ulnae, primary mesenchymal stem cells
(MSCs) and MC3T3 cells under various stress conditions. The ulnae were loaded with an
elbow loading modality [18], while the MSCs and MC3T3 cells were treated with 1 h
fluid flow at 20 dynes/cm?. Focusing on the MC3T3 cells, the mMRNA and protein levels
of the selected stress-linked genes were determined and cell mortality was evaluated in
the presence and the absence of mechanical stimulation, the stressors to the ER
(thapsigargin and tunicamycin) or an oxidative agent (H,O,) [19-20]. Gene expression
was determined by quantitative real-time PCR and Western blot analysis, and the role of
Perk was examined by depleting its mMRNA with small interfering RNA (siRNA).

To examine the hypotheses in Aim 2, we undertook a genome-wide gene
expression analysis using MC3T3 E1 osteoblast-like cells that were grown on a collagen-
coated dish (2D model) or seeded in a collagen matrix (3D model). We first predicted
molecular signaling pathways that were linked to differential gene expression in the 2D
and 3D models, and then examined their potential roles in osteoblast differentiation
through a series of real-time PCR and Western analyses. Signaling pathways were
analyzed using PathwayExpress software, while the prediction of transcriptional factor
binding motifs was conducted using custom-made software. In order to evaluate the
MRNA-based prediction in a proteome level, we examined phosphorylation patterns of
the selected proteins linked to cellular proliferation and differentiation. Those proteins
include a docking protein (p130Crk-associated substrate-p130Cas) [21] and 4 kinases
such as focal adhesion kinase (FAK) [22], extracellular signal-regulated protein kinase
1/2 (ERK1/2) [23] and p38 mitogen-activated protein kinase (p38 MAPK) [24]. The role
of p38 MAPK in promoting osteoblast differentiation was verified using its selective
inhibitor — SB203580 [25].
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1.2 Organization of the Thesis

The present thesis is divided into 5 chapters.

e Chapter 1: Introduction including the specific aims, questions and hypotheses.

e Chapter 2: Materials and Methods, and Results of Aim 1 (study on mechanical
stimulation and other cellular stresses).

e Chapter 3: Materials and Methods, and Results of Aim 2 (study on ECM
geometry and signaling pathways).

e Chapter 4: Discussion of the results in Aims 1 and 2 including significance to
human health care, the limitation of current studies and potential future directions.

e Chapter 5: Summary and conclusions.
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2. MECHANICAL STIMULATION SUPPRESSES PHOSPHORYLATION OF ElIF2a
THROUGH PERK IN RESPONSE TO ER STRESS

This study investigated the role of mechanical stimulation in the regulation of
elF2a and cell death. Mechanical stimulation was applied to mouse ulnae, MC3T3 cells
and mesenchymal stem cells. Our hypothesis was that mechanical stimulation to bone
would alter phosphorylation of elF2a. through Perk and affect cell mortality. To examine
this hypothesis, we employed two flow shear systems. Agents such as thapsigargin and
H,0, were used to induce cell mortality, and siRNA technology was applied to silence a
specific kinase: Perk. A series of western analysis and real time PCR experiments were

conducted.

2.1 Materials and Methods

2.1.1 Elbow Loading
Using C57/BL6 mice (female, ~ 12 weeks; Harlan Sprague-Dawley, Inc.), elbow
loading was conducted with the procedure described previously [18]. In brief, the mouse
was anesthetized and loads were applied to the left elbow for 3 min in the lateral-medial
direction with 0.5 N force at 5 Hz. The right forelimb was used as a contralateral control.
The pairs of ulnae were harvested at 1, 3 and 5 h after loading. Soft surrounding tissues
were dissected out. The bone sample was ground with a mortar and pestle in a RIPA lysis

buffer and centrifuged at 4°C. The supernatant was used for Western blot analysis.
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2.1.2 Cell Culture

MC3T3 osteoblast-like cells (C4 clone) were cultured on a glass slide coated with
40 ug/ml type I collagen (BD Biosciences) in aMEM containing 10% fetal bovine serum
(FBS) and antibiotics (50 units/ml penicillin and 50 pg/ml streptomycin) [26]. To
establish primary MSC culture, femurs and tibias were collected from 4 to 8 week old
C57/BL6 mice. Using a 21-gauge needle, bone marrow cells were harvested with
Iscove’s MEM (Gibco-invitrogen) containing 2% FBS [27-28]. Mononuclear cells were
separated by low density gradient centrifugation. Cells were then washed twice with
Iscove’s MEM and cultured in mouse MesenCult basal medium supplemented with

MesenCult Supplemental (Stem Cell Technologies Inc.).

2.1.3 Treatment of Cells

Cellular stress was induced by incubating cells with either 1 uM thapsigargin (Tg,
Santa Cruz Biotech.) for 1 - 24 h, 1 ug/ml tunicamycin (Tn, MP Biomedicals) for 3 h, or
0.5 - 2 mM hydrogen peroxide (H,O,, Fisher Scientific) for 3 or 6 h. The flow pre-
treatment was applied for 1 h at 20 dynes/cm? shear stress. Note that this shear stress is
relevant to the loading force employed in the in vivo model [29]. Prior to flow application,
cells were grown for 1 day in a medium containing 1% FBS. For examination of cell
mortality, cells were stained with trypan blue and the numbers of live and dead cells were

counted separately using a hemacytometer.

2.1.4 Fluid Flow Systems

2.1.4.1 Chamber Flow System

Two fluid flow systems (the chamber flow system and shaker flow system) were
employed. The chamber flow system used a Streamer Gold flow device (Flexcell

International) depicted in Figure 2.1. The flow chamber contains six slots into which
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glass slides with cells can be placed. The flow reservoir was filled with 180 ml cell
culture medium, and the whole system was placed into a standard cell culture incubator
with an environment of 37°C and 5% CO; [30].

A

{

flow regulator

AT

e holder

A0 IR |
Vo \ T l

| = flow medium
ass slide i i i
g direction reservoir

Figure 2.1 Schematic of the chamber flow system

In this system, the medium flow was constrained by a pair of stationary parallel

plates and a Poiseuille flow was driven by a pressure gradient as shown in Figure 2.2.
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Figure 2.2 Poiseuille flow in the chamber flow system: medium flows from high to low
pressure, exerting shear stress on the slide’s surface in the flow direction

The shear stress on the flow chamber can be calculated:
T= ,ua— (2.1)

where P = dynamic viscosity of the fluid, u = velocity of the fluid along the boundary,
and y = height of the boundary. For a Plane Poiseuille flow model, the Navier-Stokes

equation was simplified:

d?u __1dp

o7 = ndx (2.2)

in which p = pressure, and x = coordinate along the flow direction. Shear stress t is thus

estimated:

T= Z—Z(y - g) (2.3)

where h = separating distance between the two parallel boundaries. Deducing from a

momentum balance for a Newtonian fluid,
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wh?
in which Q = volumetric flow rate, and wh = the cross section area of the slots in the

chamber. The wall shear stress t is then determined. The Reynolds number for this

system is:

_ Vo _ QL
Re = T wh (2.5)

where VV = mean fluid velocity, L = travelled length of medium, and p = medium density.
When Q is in the range of 0 - 1700 ml/min in the current study, Re is less than 2000.
Thus, the fluid flow in the chamber is laminar and the shear stress calculation above is

valid. With this system, shear stress in the range of 2 to 45 dynes/cm? was induced.

2.1.4.2 Shaker Flow System

In the shaker flow system, illustrated in Figure 2.3, the cell covered glass slides

were placed in a rotating flow consisting of 30 ml cell culture medium.
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Figure 2.3 Schematic of the shaker flow system

The Reynolds number of this system is calculated:

VL _ rol

Re=—=" (2.6)

where L = length of the glass slides, r = mean radius of the medium flow, w = angular

velocity of fluid flow, and v = kinematic viscosity of the medium.
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Figure 2.4 Boundary layer in the shaker flow system: medium flows uniformly except in
a boundary layer that grows along the length of a glass slide

For the system at 30 rpm, Re is 8,600 (laminar when Re < 500,000). Using the
Blasius equation for a laminar flow, shear stress on the glass slides is estimated:

3
_ 0332pV2\v _ 0332p(rw)?
ST T ow W &1

where V = fluid velocity at infinity, and x = coordinate along the flow direction. When

Integrating 7 along the slide length L, the stress becomes:

3 3
_ L 0332p(rw)2 __0.664p(rw)2
v = [P Dt (28)

We employed shear stress of 2 - 5 dynes/cm? at 30 - 50 rpm.

2.1.4.3 Comparisons Between the Chamber Flow System and the Shaker Flow System

To verify predicted stress values induced by the two systems (chamber and shaker
flow systems), the expression levels of two stress response genes (c-fos and ATF4) were
determined. Using the chamber flow system, a series of shear stress including 2, 5, 20
and 45 dynes/cm? were applied. For the shaker flow system, 30 and 50 rpm rotation
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speeds were employed. After 1 h fluid flow, RNA was isolated and reverse transcription
followed by real-time PCR was conducted.

2.1.5 Real-time PCR

The mRNA levels of ATF3, ATF4, ATF6, CHOP, c-fos and Xbpl in response to
Tg and/or flow were determined using quantitative real-time PCR with the primers listed
in Table 2.1. Total RNA was extracted using an RNeasy Plus mini kit (Qiagen). Reverse
transcription was performed, and real-time PCR was carried out using ABI 7500 with
SYBR green PCR kits (Applied Biosystems). The mRNA level of GAPDH was used as
an internal control to calibrate potential variations in cell numbers. Within the four
experimental groups (control, flow alone, Tg alone and flow followed by Tg), the relative
MRNA levels of the selected genes were determined with respect to the GAPDH mRNA
levels. The results were analyzed using a ACt method [15], in which mRNA levels were
normalized by setting the levels in the control group to 1. For analysis of Xbpl splicing,
PCR products were separated on a 2.5% agarose gel and ethidium bromide stained bands
were captured using a Fujifilm Luminescent image analyzer (LAS-3000). Note that the
expected Xbpl mRNA sizes were 289 bp (unspliced) and 263 bp (spliced).

Table 2.1 Real-time PCR primers for the mechanical stimulation study

Gene Forward primer Backward primer

ATF3 5’-CGAAGACTGGAGCAAAATGATG-3’ 5’-CAGGTTAGCAAAATCCTCAAATAC-3’

ATF4 5"-TGGCGAGTGTAAGGAGCTAGAAA -3’ 5- TCTTCCCCCTTGCCTTACG -3’

ATF6 5’-GGATTTGATGCCTTGGGAGTCAGAC-3’ 5-ATTTTTTTCTTTGGAGTCAGTCCAT-3’

CHOP 5’-CCACCACACCTGAAAGCAGAA -3’ 5’- GGTGCCCCCAATTTCATCT -3’

Perk 5’-CCGTGACCCATCTGCACTAAT-3’ 5’-CATAAATGGCGACCCAGCTT-3’

Xbpl 5’-TTACGGGAGAAAACTCACGGC-3’ 5’-GGGTCCAACTTGTCCAGAATGC-3’
GAPDH 5’- TGCACCACCAACTGCTTAG -3’ 5’- GGATGCAGGGATGATGTTC -3’

2.1.6 Immunoblots
Cells were sonicated using a sonic dismembrator (Model 100, Fisher Scientific)

and lysed in a RIPA lysis buffer containing protease inhibitors (Santa Cruz Biotech) and
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phosphatase inhibitors (Calbiochem). Isolated proteins were fractionated using 8 - 12%
SDS gels and electro-transferred to Immobilon-P membranes (Millipore). Immunoblots
were carried out using antibodies specific to ATF4, elF2a, Perk, phospho-Perk (Thr980),
caspase-3 (total and cleaved forms; Cell Signaling); CHOP (Santa Cruz); phospho-elF2a
(pS°%) (Biosource) and B-actin (Sigma). After incubation with anti-rabbit 1gG (Cell
Signaling) or anti-mouse IgG (Amersham) antibodies conjugated with HRP, signals were
detected with ECL chemiluminescence. Images were captured using a Fujifilm
Luminescent image analyzer and analyzed using Adobe Photoshop (version 7.0).

2.1.7 RNA Interference

To evaluate the role of Perk in Tg-induced stress with and without the flow pre-
treatment, cells were treated with siRNA specific to Perk. In brief, Perk siRNA (sc-36214,
Santa Cruz Biotech.) was mixed with a siRNA transfection reagent (sc-36868) in a
transfection medium (sc-36868), and the mixture was incubated with cells for 18 h
without FBS and antibiotics. Control siRNA-A (sc-37007) was employed as the siRNA
control. The Perk mRNA level was evaluated by real-time PCR using the pair of primers
included in Table 2.1. Transfected cells were used for experiments after growing in a

normal aMEM medium for 2 days.

2.1.8 Statistical Analysis
All values are expressed as mean + S.D. Data were evaluated using Fisher’s
PLSD post hoc test after one-way ANOVA tests with Stat View 5.0 (SAS Institute).
Statistical significance was examined at p < 0.05. Note that statistical significance was
indicated in figures with * (p < 0.05), ** (p < 0.01) and *** (p < 0.001).
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2.2 Results

2.2.1 Comparisons of Messenger RNA Levels Using the Two Flow Systems

We chose ATF4 and c-fos as two stress responsive genes in osteoblasts, since
their RNA expression levels altered depending on shear intensities. In Figure 2.5, a linear
regression analysis was conducted to establish the relationships between the induced

MRNA expression levels and estimated shear stress intensities.

In the shaker system, the ATF4 mRNA levels were increased 1.1-fold (30 rpm)
and 1.25-fold (50 rpm) of those of the control cells. The c-fos MRNA expression levels
were elevated by 1.35 and 2.75 times at 30 rpm and 50 rpm respectively. Note that all the
data were the average of the results generated from experiments replicated at least once.

The two linear regression lines, generated for ATF4 and c-fos with the chamber
flow system, provided a “reference curve” for estimating shear intensities with the shaker
flow system. Consequently, the rotations at 30 and 50 rpm induced shear stress
equivalent to 2 and 5 dynes/cm? with the chamber flow system respectively. This
experiment based estimation was in congruity with the estimation obtained from the

Blasius equation.
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Figure 2.5 Relative mRNA levels of ATF4 and c-fos of MC3T3 cells in response to a
series of shear stress generated by the chamber flow system
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2.2.2 Load-driven Down-regulation of elF2a-p In Vivo and In Vitro
Mechanical stimulation reduced the phosphorylated level of elF2a (elF2a-p)
(Figure 2.7). First, the loaded ulnae exhibited a lower level of elF2a-p than the
contralateral counterpart with no alteration in the level of elF2a.. Second, in response to
flow treatment, the level of elF2a-p decreased in both MSCs and MC3T3 cells. Figure
2.6 shows the experimental time scheme for in vitro fluid flow treatment by the chamber

flow system.
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>
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1h flow
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Figure 2.6 Experimental time scheme for in vitro fluid flow treatment
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Figure 2.7 Load-driven down-regulation of elF2a phosphorylation. (a) Reduction in
elF2a-p in the loaded ulnae. (b) Reduction in elF2a-p in MSCs. (¢) Reduction in elF2a-p
in MC3T3 cells
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2.2.3 Alterations in the Protein Levels of Perk-p

In concert with load-driven down-regulation of elF2a-p, mechanical stimulation
reduced the level of phosphorylated Perk (Perk-p) in the mouse ulnae (Figure 2.9). Since
the basal expression level of Perk-p was low, we confirmed the effects of mechanical
stimulation on the expression levels of Perk-p in the presence of ER stress inducers (1
uM Tg and 1 pg/ml Tn) in MC3T3 cells. Figure 2.8 shows the time scheme of this
experiment. First, Tg elevated the Perk-p levels as well as the levels of a pro-apoptotic
gene: CHOP. However, the 1 h flow pre-treatment suppressed their elevation by 31%
(Perk-p) and 49% (CHOP). Second, the flow pre-treatment reduced Tn-driven up-
regulation of elF2a-p, Perk-p and CHOP by 20%, 22% and 75%, r